Approximating the Rectilinear Crossing Number

نویسندگان

  • Jacob Fox
  • János Pach
  • Andrew Suk
چکیده

A straight-line drawing of a graph G is a mapping which assigns to each vertex a point in the plane and to each edge a straightline segment connecting the corresponding two points. The rectilinear crossing number of a graph G, cr(G), is the minimum number of pairs of crossing edges in any straight-line drawing of G. Determining or estimating cr(G) appears to be a difficult problem, and deciding if cr(G) ≤ k is known to be NP-hard. In fact, the asymptotic behavior of cr(Kn) is still unknown. In this paper, we present a deterministic n-time algorithm that finds a straight-line drawing of any n-vertex graph G with cr(G)+ o(n) pairs of crossing edges. Together with the well-known Crossing Lemma due to Ajtai et al. and Leighton, this result implies that for any dense n-vertex graph G, one can efficiently find a straight-line drawing of G with (1 + o(1))cr(G) pairs of crossing edges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics

Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersec...

متن کامل

Mathematical Programming Formulation of Rectilinear Crossing Minimization

In a rectilinear drawing of a simple graph G each vertex is mapped to a distinct point in the plane and each edge is represented by a straight-line segment with appropriate ends. The goal of rectilinear crossing minimization is to find a rectilinear drawing of G with as few edge crossings as possible. A new approach to rectilinear crossing minimization is presented including a formulation of th...

متن کامل

A Linear Upper Bound on the Rectilinear Crossing Number

It is proved that the rectilinear crossing number of every graph with bounded tree-width and bounded degree is linear in the num-

متن کامل

Elie Feder And

We introduce the Orchard crossing number, which is defined in a similar way to the well-known rectilinear crossing number. We compute the Orchard crossing number for some simple families of graphs. We also prove some properties of this crossing number. Moreover, we define a variant of this crossing number which is tightly connected to the rectilinear crossing number, and compute it for some sim...

متن کامل

The Maximum of the Maximum Rectilinear Crossing Numbers of d-Regular Graphs of Order n

We extend known results regarding the maximum rectilinear crossing number of the cycle graph (Cn) and the complete graph (Kn) to the class of general d-regular graphs Rn,d. We present the generalized star drawings of the d-regular graphs Sn,d of order n where n + d ≡ 1 (mod 2) and prove that they maximize the maximum rectilinear crossing numbers. A star-like drawing of Sn,d for n ≡ d ≡ 0 (mod 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016